Abstract

Mg3 (Sb,Bi)2 is a potential nearly-room temperature thermoelectric compound composed of earth-abundant elements. However, complex defect tuning and exceptional microstructural control are required. Prior studies have confirmed the detrimental effect of Mg vacancies in Mg3 (Sb,Bi)2 . This study proposes an approach to mitigating the negative scattering effect of Mg vacancies (VMg ) by Bi deficiency, synergistically modulating the electrical and thermal transport properties to enhance the thermoelectric performance. Positron annihilation spectrometry and Cs -corrected scanning transmission electron microscopy analyses indicated that the VMg tends to coalesce due to the introduced VBi . The defects created by Bi deficiency effectively weaken the scattering of electrons from the intrinsic VMg and enhance phonon scattering. A peak zT of 1.82 at 773 K and high conversion efficiency of 11.3% at ∆T = 473 K are achieved in the optimized composition of Mg3 (Sb,Bi)2 by tuning the defect combination. This work demonstrates a feasible and effective approach to improving the performance of Mg3 (Sb,Bi)2 as an emerging thermoelectric material. This article is protected by copyright. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call