Abstract

Phenotypic screening has regained momentum in the pharmaceutical industry owing to its success over target-based screening. Most phenotypic screening relies on nonspecific biochemical readouts regarding cellular viability, which hampers the discovery of novel drug mechanisms of action (MOAs). Here we present a Contractility-based bi-Content micro-Collagen Chip (3CChip), which establishes cellular contractility as a biomechanics-related phenotype for drug screening. Bi-content analysis of cell contractility (imaged by iPhone) and viability suggests that the label-free contractility-based analysis exhibits superior sensitivity to compounds targeting contractile elements (e.g. focal adhesion, cytoskeleton), resulting in a enlarged target pool for drug assessment. Six typical readout patterns of drug response are summarized according to the relative positions of the contraction/viability curves, and drug targets are profiled into three categories (biomechanical, biochemical and housekeeping) by 3CChip, which will benefit subsequent target identification. The simple-to-use and effective 3CChip offers a robust platform for micro-tissue-based functional screening and may lead to a new era of mechanism-informed phenotypic drug discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.