Abstract

AbstractA C60‐polyphenylacetylene (C60‐PPA) and polyvinylpyrrolidone (PVP) coated two‐channel surface acoustic wave (SAW) crystal gas sensor with a homemade computer interface for data acquisition and data processing was developed and employed to detect carbon disulfide (CS2) and methanol (CH3OH) vapors in polymer plants. The frequency of surface acoustic wave oscillator decreases due to the adsorption of gas molecules on the coated materials of the SAW sensor. Six coating materials (C60‐PPA, nafion, PPA, crytand [2,2], polyethene glycol and PVP) were used to adsorb and detect carbon disulfide and methanol gases. Adsorption of all the six coating materials to CS2 and CH3OH was found to be physical adsorption. The C60‐PPA coated SAW detector exhibited more sensitive to CS2 than the other coating materials. In contrast, the PVP coated SAW detector was more sensitive to CH3OH than the other coating materials. With the two‐channel SAW sensor, the C60‐PPA coated SAW showed a good detection limit of 0.4 ppm and good reproducibility with RSD of 3.37 % (n=10) for CS2. Similarly, the PVP coated SAW also showed a good detection limit of 0.05 ppm and good reproducibility, with RSD of 0.86 % (n=10) for CH3OH. The interference effect of other organic molecules on the SAW detection system was negligible, except for the irreversible adsorption of C60‐PPA to propylamine. The frequency signals from the two‐channel SAW sensor array C60‐PPA and PVP coatings were processed by a back‐propagation artificial neural network (BPN) and multiple regression analysis (MRA). Thus a two‐channel SAW sensor array with BPN and MRA has been successfully applied for the qualitative and quantitative analyses of CS2 and CH3OH in mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call