Abstract

BhGLM is a freely available R package that implements Bayesian hierarchical modeling for high-dimensional clinical and genomic data. It consists of functions for setting up various Bayesian hierarchical models, including generalized linear models (GLMs) and Cox survival models, with four types of prior distributions for coefficients, i.e. double-exponential, Student-t, mixture double-exponential and mixture Student-t. These functions adapt fast and stable algorithms to estimate parameters. BhGLM also provides functions for summarizing results numerically and graphically and for evaluating predictive values. The package is particularly useful for analyzing large-scale molecular data, i.e. detecting disease-associated variables and predicting disease outcomes. We here describe the models, algorithms and associated features implemented in BhGLM. The package is freely available from the public GitHub repository, https://github.com/nyiuab/BhGLM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.