Abstract
We explore how the classical Bhatia-Davis inequality bounding variances can be extended to uncertainty evaluations of gambles (bounded random numbers) by means of imprecise (lower or upper) previsions with different degrees of consistency. Firstly, a number of extensions are found with 2-coherent imprecise previsions. Subsequently, bounds with coherent lower and upper previsions are investigated, together with applications bounding lower and upper variances as well as p-boxes. Finally, bounds for covariances and for lower and upper covariances are obtained. Like the classical situation, imprecise Bhatia-Davis inequalities require a reduced amount of uncertainty information to be applied. When even less information is available, we show that various versions of Popoviciu's inequality obtain.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.