Abstract

Hereditary sensory and autonomic neuropathy type III, or familial dysautonomia [FD; Online Mendelian Inheritance in Man (OMIM) 223900], affects the development and long-term viability of neurons in the peripheral nervous system (PNS) and retina. FD is caused by a point mutation in the gene IKBKAP/ELP1 that results in a tissue-specific reduction of the IKAP/ELP1 protein, a subunit of the Elongator complex. Hallmarks of the disease include vasomotor and cardiovascular instability and diminished pain and temperature sensation caused by reductions in sensory and autonomic neurons. It has been suggested but not demonstrated that mitochondrial function may be abnormal in FD. We previously generated an Ikbkap/Elp1 conditional-knockout mouse model that recapitulates the selective death of sensory (dorsal root ganglia) and autonomic neurons observed in FD. We now show that in these mice neuronal mitochondria have abnormal membrane potentials, produce elevated levels of reactive oxygen species, are fragmented, and do not aggregate normally at axonal branch points. The small hydroxylamine compound BGP-15 improved mitochondrial function, protecting neurons from dying in vitro and in vivo, and promoted cardiac innervation in vivo. Given that impairment of mitochondrial function is a common pathological component of neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer's, Parkinson's, and Huntington's diseases, our findings identify a therapeutic approach that may have efficacy in multiple degenerative conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call