Abstract

The bundle-forming pili (BFP) of enteropathogenic Escherichia coli are believed to play a role in pathogenesis by causing the formation of bacterial microcolonies that bind epithelial surfaces of the small intestine. This in vivo process is mimicked in vitro by the autoaggregation and localized adherence phenotypes. Expression of BFP, a member of the type IV pilus family, requires the enteroadherence factor (EAF) plasmid, which contains bfpA, the gene that encodes the principal structural subunit of BFP. Immediately downstream of bfpA are 13 open reading frames transcribed in the same direction as bfpA; together with bfpA, these compose the bfp gene cluster. Disruption of bfpB, the second open reading frame downstream of bfpA, was performed by allelic exchange. The resulting mutant, B171-8deltaB, did not exhibit the autoaggregation or localized adherence phenotype or produce BFP filaments. Thus, BfpB is required for pilus biogenesis. However, BfpA was produced at wild-type levels and processed normally by B171-8deltaB, indicating that BfpB acts at a step in the BFP biogenic pathway after production and processing of the structural subunit. Biochemical and cell fractionation studies showed that BfpB is a 58-kDa lipoprotein that is located primarily in the outer membrane. Assays of bfpA and bfpB mRNAs and protein expression showed that both genes are cotranscribed as part of an environmentally responsive operon that is regulated by growth phase and ammonium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.