Abstract

Cultured hippocampal neurons have been used to study GAP-43 phosphorylation and subcellular distribution. By immunofluorescence, GAP-43 was found associated with adherent membrane patches that remained attached to the substratum after in situ permeabilization with Nonidet-NP40. This association increases during neuronal development and is stabilized by the actin cytoskeleton. Basic fibroblast growth factor (bFGF) promotes GAP-43 translocation from the cytosol to adherent membrane patches and, at the same time, stimulates GAP-43 phosphorylation, mainly at the protein kinase C (PKC) site (Ser41). Inhibition of PKC prevented bFGF-stimulated GAP-43 phosphorylation and translocation, while activation by phorbol esters mimicked bFGF effects, suggesting that phosphorylation at Ser41 regulates GAP-43 subcellular localization. Using biochemical fractionation and phosphorylation analysis, it was found that Ser41 phosphorylation was highest in cytoskeleton-associated GAP-43 and lowest in membrane-associated GAP-43. It is proposed that GAP-43 is continuously cycling between intracellular compartments depending on its phosphorylation state and could be taking part in initial adhesive complexes assembled during growth cone advance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call