Abstract

Photothermal therapy (PTT), a simple and minimally invasive procedure, is an attractive option for cancer therapy. To date, inorganic agents have been widely employed as photothermal agents; however, organic molecules may provide a solution to rapid metabolic/in vivo clearance. Herein, we prepared lipid (S 75)-stabilized meso-tritolyl-BF2-oxasmaragdyrin nanoparticles (TBSNPs) using thin-film hydration and homogenization. Assessment of the physicochemical properties of the TBSNPs reveals the formation of particles of size <12 nm stabilized within the lipid matrix. The TBSNPs exhibit near infrared fluorescence (NIRF) being accompanied by an increase in non-radiative decay, leading to excellent photothermal properties. In vitro studies demonstrate excellent biocompatibility, hemocompatibility, cellular internalization, and photothermal efficacy (p = 0.0004). Extensive in vivo assessment of TBSNPs also highlights the non-toxic nature of the material and passive tumor homing. The strong NIRF exhibited by the material is exploited for whole-body imaging in the rodent model. The novel material also shows excellent photothermal efficacy (p = 0.0002) in a 4T1 xenograft mice model. The organic nature of the material coupled with its small size and strong NIRF provides an advantage for bio-elimination and potential clinical image-guided therapy over the inorganic counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.