Abstract
We develop a portfolio risk model that uses high-frequency data to forecast the loss surface, which is the set of loss distributions at future time horizons. Our model uses a fully automated, semi-parametric fitting procedure that has its basis in extreme value statistics. We take account of distributional asymmetry, heavy tails, heteroscedasticity, and serial correlation. Loss distributions are time aggregated by taking products of characteristic functions. We test loss-surface-implied forecasts of value at risk and expected shortfall out of sample on a diverse set of portfolios and we compare our forecasts to industry-standard risk forecasts that are based on asset and factor covariance matrices. The empirical results make a compelling case for the application and further development of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.