Abstract

Low-field nuclear spin singlet states may be used to store nuclear spin order in a room temperature liquid for a time much longer than the spin-lattice relaxation time constant T1. The low-field nuclear spin singlets are unaffected by intramolecular dipole-dipole relaxation, which is generally the predominant relaxation mechanism. We demonstrate storage of nuclear spin order for more than 10 times longer than the measured value of T1. This phenomenon may facilitate the development of nuclear spin hyperpolarization methods and may allow the study of motional processes which occur too slowly for existing NMR techniques. This is the first time that the memory of nuclear spins has been extended well beyond the T1 limit in a system lacking intrinsic magnetic equivalence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call