Abstract
Conventionally, a single Temperature Polarisation Coefficient (TPC) value is calculated to quantify Temperature Polarisation (TP). In this research, the extent of polarisation is investigated by capturing temperature profiles at specific points along a MD membrane using miniature thermocouples, eliminating the need for TPC calculations. The extent of polarisation at a point is affected by two contributory factors, namely the proximity of flow inlets and the difference in vapour pressure across the membrane at that point. Under this direction, this work examined the influence of permeate temperature, feed salinity, and flow direction on the development of the temperature profiles. Our analysis revealed an elevation in TP on both sides of the membrane when the permeate temperature was increased. In addition, changes in feed salinity had a very minute impact on the development of the temperature profiles. By comparing the cocurrent and counter-current flow, the influence of the two contributory factors was further proved, with counter-current flow working better for long membrane modules. Furthermore, an investigation on the symmetricity of polarisation across the membrane revealed asymmetricity depends on the operating conditions, especially direction of flow. The asymmetricity was infinitesimal at low inlet temperature differences for cocurrent flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.