Abstract

It is thought that a close dialogue between the primary motor (M1) and somatosensory (S1) cortices is necessary for skilled motor learning. The extent of the relative S1 contribution in producing skilled reaching movements, however, is still unclear. Here we used anodal transcranial direct current stimulation (tDCS), which is able to alter polarity-specific excitability in the S1, to facilitate skilled movement in intact behaving rats. We hypothesized that the critical role of S1 in reaching performance can be enhanced by bilateral tDCS. Pretrained rats were assigned to control or stimulation conditions: (1) UnAno: the unilateral application of an anodal current to the side contralateral to the paw preferred for reaching; (2) BiAno1: bilateral anodal current; (3) BiAno2: a bilateral anodal current with additional 30ms of 65μA pulses every 5s. Rats received tDCS (65μA; 10min/rat) to the S1 during skilled reach training for 20 days (online-effect phase). After-effect assessment occurred for the next ten days in the absence of electrical stimulation. Quantitative and qualitative analyses of online-effects of tDCS showed that UnAno and BiAno1 somatosensory stimulation significantly improve skilled reaching performance. Bilateral BiAno1 stimulation was associated with greater qualitative functional improvement than unilateral UnAno stimulation. tDCS-induced improvements were not observed in the after-effects phase. Quantitative cytoarchitectonic analysis revealed that somatosensory tDCS bilaterally increases cortical neural density. The findings emphasize the central role of bilateral somatosensory feedback in skill acquisition through modulation of cortico-motor excitability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call