Abstract

Most analysis of web search relevance and performance takes a single query as the unit of search engine interaction. When studies attempt to group queries together by task or session, a timeout is typically used to identify the boundary. However, users query search engines in order to accomplish tasks at a variety of granularities, issuing multiple queries as they attempt to accomplish tasks. In this work we study real sessions manually labeled into hierarchical tasks, and show that timeouts, whatever their length, are of limited utility in identifying task boundaries, achieving a maximum precision of only 70%. We report on properties of this search task hierarchy, as seen in a random sample of user interactions from a major web search engine's log, annotated by human editors, learning that 17% of tasks are interleaved, and 20% are hierarchically organized. No previous work has analyzed or addressed automatic identification of interleaved and hierarchically organized search tasks. We propose and evaluate a method for the automated segmentation of users' query streams into hierarchical units. Our classifiers can improve on timeout segmentation, as well as other previously published approaches, bringing the accuracy up to 92% for identifying fine-grained task boundaries, and 89-97% for identifying pairs of queries from the same task when tasks are interleaved hierarchically. This is the first work to identify, measure and automatically segment sequences of user queries into their hierarchical structure. The ability to perform this kind of segmentation paves the way for evaluating search engines in terms of user task completion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call