Abstract

<i>Context. <i/>Chemical models of dense cloud cores often utilize the so-called pseudo-time-dependent approximation, in which the physical conditions are held fixed and uniform as the chemistry occurs. In this approximation, the initial abundances chosen, which are totally atomic in nature except for molecular hydrogen, are artificial. A more detailed approach to the chemistry of dense cold cores should include the physical evolution during their early stages of formation.<i>Aims. <i/>Our major goal is to investigate the initial synthesis of molecular ices and gas-phase molecules as cold molecular gas begins to form behind a shock in the diffuse interstellar medium. The abundances calculated as the conditions evolve can then be utilized as reasonable initial conditions for a theory of the chemistry of dense cores.<i>Methods. <i/>Hydrodynamic shock-wave simulations of the early stages of cold core formation are used to determine the time-dependent physical conditions for a gas-grain chemical network. We follow the cold post-shock molecular evolution of ices and gas-phase molecules as the visual extinction increases with time to <i>A<i/><sub>V<sub/> <i>≈<i/> 3. (Note that instead of an equal sign, the approximately equal sign should remain.) At higher extinction, self-gravity becomes important. <i>Results. <i/> As the newly condensed gas enters its cool post-shock phase, a large amount of CO is produced in the gas. As the CO forms, water ice is produced on grains, while accretion of CO produces CO ice. The production of CO<sub>2<sub/> ice from CO occurs via several surface mechanisms, while the production of CH<sub>4<sub/> ice is slowed by gas-phase conversion of C into CO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.