Abstract

The active site residue, Glu-376, of medium-chain acyl-CoA dehydrogenase (MCAD) has been known to abstract the alpha-proton from acyl-CoA substrates during the course of the reductive half-reaction. The site-specific mutation of Glu-376-->Gln(E376Q) slows down the octanoyl-CoA-dependent reductive half-reaction of the enzyme by about 5 orders of magnitude due to impairment in the proton-transfer step. To test whether the carboxyl group of Glu-376 exclusively serves as the active site base (for abstracting the alpha-proton) during the enzyme catalysis, we undertook a detailed kinetic investigation of the enzyme-ligand interaction and enzyme catalysis, utilizing octanoyl-CoA/octenoyl-CoA as a physiological substrate/product pair and the wild-type and E376Q mutant enzymes as the catalysts. The transient kinetic data revealed that the E376Q mutation not only impaired the rate of octanoyl-CoA-dependent reduction of the enzyme-bound FAD, but also impaired the association and dissociation rates for the binding of the reaction product, octenoyl-CoA. Besides, the E376Q mutation correspondingly impaired the kinetic profiles for the quenching of the intrinsic protein fluorescence during the course of the above diverse (i.e., "chemistry" versus "physical interaction") processes. A cumulative account of the experimental data led to the suggestion that the carboxyl group of Glu-376 of MCAD is intimately involved in modulating the microscopic environment (protein conformation) of the enzyme's active site during the course of ligand binding and catalysis. Arguments are presented that the electrostatic interactions among Glu-376, FAD, and CoA-ligands are responsible for structuring the enzyme's active site cavity in the ground and transition states of the enzyme during the above physicochemical processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call