Abstract
Gini-type correlation coefficients have become increasingly important in a variety of research areas, including economics, insurance and finance, where modelling with heavy-tailed distributions is of pivotal importance. In such situations, naturally, the classical Pearson correlation coefficient is of little use. On the other hand, it has been observed that when light-tailed situations are of interest, and hence when both the Gini-type and Pearson correlation coefficients are well-defined and finite, then these coefficients are related and sometimes even coincide. In general, understanding how the correlation coefficients above are related has been an illusive task. In this paper we put forward arguments that establish such a connection via certain regression-type equations. This, in turn, allows us to introduce a Gini-type Weighted Insurance Pricing Model that works in heavy-tailed situation and thus provides a natural alternative to the classical Capital Asset Pricing Model. We illustrate our theoretical considerations using several bivariate distributions, such as elliptical and those with heavy-tailed Pareto margins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.