Abstract
We present the first simulations of a reduced magnetized plasma model that incorporates both arbitrary wavelength polarization and non-Oberbeck–Boussinesq effects. Significant influence of these two effects on the density, electric potential and vorticity and non-linear dynamics of interchange blobs are reported. Arbitrary wavelength polarization implicates so-called gyro-amplification that compared to a long wavelength approximation leads to highly amplified small-scale vorticity fluctuations. These strongly increase the coherence and lifetime of blobs and alter the motion of the blobs through a slower blob-disintegration. Non-Oberbeck–Boussinesq effects incorporate plasma inertia, which substantially decreases the growth rate and linear acceleration of high amplitude blobs, while the maximum blob velocity is not affected. Finally, we generalize and numerically verify unified scaling laws for blob velocity, acceleration and growth rate that include both ion temperature and arbitrary blob amplitude dependence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.