Abstract
BackgroundWhile the facilitatory and inhibitory effects of intermittent theta burst stimulation (iTBS) and continuous TBS (cTBS) protocols have been well documented on motor physiology, the action of TBS protocols on prefrontal functioning remain unclear. Here we asked whether iTBS or cTBS can differentially modulate reward-related signaling in the anterior midcingulate cortex (aMCC). MethodsAcross 2 experiments, we used a robot-assisted transcranial magnetic stimulation system, combined with electroencephalogram recordings, to investigate the aftereffects of prefrontal iTBS and cTBS on the reward positivity, an electrophysiological signal believed to index sensitivity of the aMCC to rewards. Twenty adults (age, 18–28 years) participated in experiment 1 in which we used a scalp landmark for TBS targeting, and 14 adults (age, 18–28 years) participated in experiment 2, in which we aimed to increase TBS effectiveness by utilizing cortical thickness maps to select individualized dorsal lateral prefrontal cortex targets. ResultsWe demonstrated that prefrontal iTBS suppressed reward-related signaling in the aMCC (reduction in reward positivity) and caused a decrease in postfeedback switch choices. cTBS displayed no effect. We replicated and strengthened this effect on the reward positivity by targeting dorsal lateral prefrontal cortex regions displaying maximal cortical thickness. ConclusionsWhile these results are inconsistent with reported TBS effects on motor cortex, the present findings offer a novel transcranial magnetic stimulation targeting approach and normative insights into the magnitude and time course of TBS-induced changes in aMCC excitability. By modulating how the aMCC links value to goal-directed behavior, this research opens an exciting new era of investigative possibilities in the understanding of aMCC function and treatment of aMCC dysfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.