Abstract

Mitochondrial disorders, stemming from mutations in mitochondrial DNA (mtDNA), present a significant therapeutic challenge due to their complex pathophysiology and broad spectrum of clinical manifestations. Traditional gene therapy approaches, primarily reliant on viral vectors, face obstacles such as potential immunogenicity, insertional mutagenesis, and the specificity of targeting mtDNA. This review delves into non-viral methods for mitochondrial gene delivery, emerging as a promising alternative to overcome these limitations. Focusing on lipid-based nanoparticles, polymer-based vectors, and mitochondrial-targeted peptides, the mechanisms of action, advantages, and current applications in treating mitochondrial diseases was well elucidated. Non-viral vectors offer several benefits, including reduced immunogenicity, enhanced safety profiles, and the flexibility to carry a wide range of genetic material. We examine case studies where these methods have been applied, highlighting their potential in correcting pathogenic mtDNA mutations and mitigating disease phenotypes. Despite their promise, challenges such as delivery efficiency, specificity, and long-term expression stability persist. The review underscores the need for ongoing research to refine these delivery systems carry a wide range of genetic material. We examine case studies where these methods settings. As we advance our understanding of mitochondrial biology and gene delivery technologies, non-viral methods hold the potential to revolutionize the treatment of mitochondrial disorders, offering hope for therapies that can precisely target and correct the underlying genetic defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call