Abstract

Abstract Ultracool dwarf stars and brown dwarfs provide a unique probe of large-scale Galactic structure and evolution; however, until recently spectroscopic samples of sufficient size, depth, and fidelity have been unavailable. Here, we present the identification of 164 M7-T9 ultracool dwarfs in 0.6 deg2 of deep, low-resolution, near-infrared spectroscopic data obtained with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) instrument as part of the WFC3 Infrared Spectroscopic Parallel Survey and the 3D-HST survey. We describe the methodology by which we isolate ultracool dwarf candidates from over 200,000 spectra, and show that selection by machine-learning classification is superior to spectral index-based methods in terms of completeness and contamination. We use the spectra to accurately determine classifications and spectrophotometric distances, the latter reaching to ∼2 kpc for L dwarfs and ∼400 pc for T dwarfs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.