Abstract
To solve a design problem, sometimes it is necessary to identify the feasible design space. For design spaces with implicit constraints, sampling methods are usually used. These methods typically bound the design space; that is, limit the range of design variables. But bounds that are too small will fail to cover all possible designs, while bounds that are too large will waste sampling budget. This paper tries to solve the problem of efficiently discovering (possibly disconnected) feasible domains in an unbounded design space. We propose a data-driven adaptive sampling technique—ε-margin sampling, which learns the domain boundary of feasible designs and also expands our knowledge on the design space as available budget increases. This technique is data-efficient, in that it makes principled probabilistic trade-offs between refining existing domain boundaries versus expanding the design space. We demonstrate that this method can better identify feasible domains on standard test functions compared to both random and active sampling (via uncertainty sampling). However, a fundamental problem when applying adaptive sampling to real world designs is that designs often have high dimensionality and thus require (in the worst case) exponentially more samples per dimension. We show how coupling design manifolds with ε-margin sampling allows us to actively expand high-dimensional design spaces without incurring this exponential penalty. We demonstrate this on real-world examples of glassware and bottle design, where our method discovers designs that have different appearance and functionality from its initial design set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.