Abstract

Most common food grains contain gluten proteins and can cause adverse medical conditions generally known as gluten-related disorders. Celiac disease is an immune-mediated enteropathy triggered by gluten in individuals carrying a specific genetic make-up. The presence of the human leukocyte antigens (HLA)-DQ2 and HLA-DQ8 haplotypes together with gluten intake is a necessary, although not sufficient, condition, to develop celiac disease. Fine mapping of the human genome has revealed numerous genetic variants important in the development of this disease. Most of the genetic variants are small nucleotide polymorphisms located within promoters and transcriptional enhancer sequences. Their importance is underlined by an increased risk in DQ2/DQ8 carriers who also have these non-HLA alleles. In addition, several immune-mediated diseases share susceptibility loci with celiac disease, shedding light on the reasons for co-occurrence between these diseases. Finally, most of the genes potentially involved in celiac disease by fine genetic mapping of non-HLA loci were confirmed in gene expression studies. In contrast to celiac disease, very little is known about the genetic make-up of non-celiac wheat sensitivity (NCWS), a clinically defined pathology that shares symptoms and gluten dependence with the celiac disease. We recently identified differentially expressed genes and miRNAs in the intestinal mucosa of these patients. Remarkably, the differentially expressed genes were long non-coding RNAs possibly involved in the regulation of cell functions. Thus, we can speculate that important aspects of these diseases depend on alteration of regulatory genetic circuits. Furthermore, our finding suggests that innate immune response is involved in the pathogenic mechanism of NCWS. This review is intended to convey the idea that in order to fully understand celiac disease and its relationship with other gluten-related disorders, it is worth learning more about non-HLA variants.

Highlights

  • Frontiers in NutritionFine mapping of the human genome has revealed numerous genetic variants important in the development of this disease

  • Celiac disease is an immune-mediated enteropathy triggered by ingestion of gluten in genetically predisposed individuals [1, 2]

  • Cytokines released by activated T cells contribute to the differentiation of B lymphocytes into plasma cells and the production of antibodies, mainly of the IgA subtype, against gluten peptides and TG2

Read more

Summary

Frontiers in Nutrition

Fine mapping of the human genome has revealed numerous genetic variants important in the development of this disease. Most of the genetic variants are small nucleotide polymorphisms located within promoters and transcriptional enhancer sequences. Their importance is underlined by an increased risk in DQ2/DQ8 carriers who have these non-HLA alleles. Most of the genes potentially involved in celiac disease by fine genetic mapping of non-HLA loci were confirmed in gene expression studies. The differentially expressed genes were long non-coding RNAs possibly involved in the regulation of cell functions. This review is intended to convey the idea that in order to fully understand celiac disease and its relationship with other gluten-related disorders, it is worth learning more about non-HLA variants

INTRODUCTION
CONCLUSIONS
Findings
AUTHOR CONTRIBUTIONS

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.