Abstract

We report ionic strength-dependent phase shifts in second harmonic generation (SHG) signals from charged interfaces that verify a recent model in which dispersion between the fundamental and second harmonic beams modulates observed signal intensities. We show how phase information can be used to unambiguously separate the χ(2) and interfacial potential-dependent χ(3) terms that contribute to the total signal and provide a path to test primitive ion models and mean field theories for the electrical double layer with experiments to which theory must conform. Finally, we demonstrate the new method on supported lipid bilayers and comment on the ability of our new instrument to identify hyper-Rayleigh scattering contributions to common homodyne SHG measurements in reflection geometries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.