Abstract

Bush-crickets have dual-input, tympanal ears located in the tibia of their forelegs. The sound will first of all reach the external sides of the tympana, before arriving at the internal sides through the bush-cricket's ear canal, the acoustic trachea (AT), with a phase lapse and pressure gain. It has been shown that for many bush-crickets, the AT has an exponential horn-shaped morphology and function, producing a significant pressure gain above a certain cut-off frequency. However, the underlying mechanism of different AT designs remains elusive. In this study, we demonstrate that the AT of the duetting Phaneropterinae bush-cricket Pterodichopetala cieloi function as coupled resonators, producing sound pressure gains at the sex-specific conspecific calling song frequency, and attenuating the remainder—a functioning mechanism significantly different from an exponential horn. Furthermore, it is demonstrated that despite the sexual dimorphism between the P. cieloi AT, both male and female AT have a similar biophysical mechanism. The analysis was carried out using an interdisciplinary approach, where micro-computed tomography was used for the morphological properties of the P. cieloi AT, and a finite-element analysis was applied on the precise tracheal geometry to further justify the experimental results and to go beyond experimental limitations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.