Abstract

Intraoperative hypotension (IOH) during general anesthesia is associated with higher morbidity and mortality, although randomized trials have not established a causal relation. Historically, our approach to IOH has been reactive. The Hypotension Prediction Index (HPI) is a machine learning software that predicts hypotension minutes in advance. This systematic review and meta-analysis explores whether using HPI alongside a personalized treatment protocol decreases intraoperative hypotension. A systematic search was performed in Pubmed and Scopus to retrieve articles published from January 2018 to February 2024 regarding the impact of the HPI software on reducing IOH in adult patients undergoing non-cardio/thoracic surgery. Excluded were case series, case reports, meta-analyses, systematic reviews, and studies using non-invasive arterial waveform analysis. The risk of bias was assessed by the Cochrane risk-of-bias tool (RoB 2) and the Risk Of Bias In Non-randomised Studies (ROBINS-I). A meta-analysis was undertaken solely for outcomes where sufficient data were available from the included studies. 9 RCTs and 5 cohort studies were retrieved. The overall median differences between the HPI-guided and the control groups were - 0.21 (95% CI:-0.33, -0.09) - p < 0.001 for the Time-Weighted Average (TWA) of Mean Arterial Pressure (MAP) < 65mmHg, -3.71 (95% CI= -6.67, -0.74)-p = 0.014 for the incidence of hypotensive episodes per patient, and - 10.11 (95% CI= -15.82, -4.40)-p = 0.001 for the duration of hypotension. Notably a large amount of heterogeneity was detected among the studies. While the combination of HPI software with personalized treatment protocols may prevent intraoperative hypotension (IOH), the large heterogeneity among the studies and the lack of reliable data on its clinical significance necessitate further investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.