Abstract
In addition to quantifying the taxonomic diversity of aquatic communities, understanding the patterns of alpha functional diversity (α-diversity) and exploring changes in functional dissimilarity (β-diversity) can improve our understanding on how ecosystems respond to environmental changes. In this study, we quantified functional alpha (α) and beta (β) diversity of macrophytic assemblages from river sites in Greece and then, examined relationships with water quality parameters and hydromorphological factors. We assigned 6 traits (Ellenberg nutrients indicator, Ellenberg light indicator, growth form, leaf size, leaf type, fruit size) to a total of 36 hydrophyte species and calculated three indices of functional diversity (functional richness, functional dispersion and functional evenness). We also estimated the total β-functional diversity and its' main components, turnover and nestedness. To assess the effects of water quality (including physical and chemical variables) we used Generalized Additive Models (GAM) for alpha functional diversity indices and Generalized Dissimilarity Models (GDM) for beta functional diversity. We performed Kruskal-Wallis tests and permutational multivariate analysis of variance (PERMANOVA) to search for significant variations of α- and β-diversity among the hydromorphological factors. Our results showed that macrophyte growth form and light preference were important trait characteristics that explained a large share of the total variance of functional composition. We also found relatively low taxonomic and functional richness, whereas taxonomic and functional dissimilarity were mostly attributed to species turnover, which expresses the changes in taxonomic and functional composition. We found significant relationships between functional dispersion and functional evenness with pH and oxygen saturation, whereas functional dissimilarity was driven only by geographic distance, although the GDM explained a small portion of the total variance. Functional richness, dispersion and evenness were significantly higher at systems with fine substrates and deep waters with low or high flow compared to systems with coarser substrates and riffle habitats. We also found significant variation in functional dissimilarity among the hydromorphological factors, although much of the total variance remained unexplained. Overall, our study highlights the importance of considering the functional diversity of aquatic plant assemblages within the frame of freshwater monitoring and conservation plans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.