Abstract

Model compression is increasingly popular in the domain of deep learning. When addressing practical problems that use complex neural network models, the availability of computational resources can pose a significant challenge. While smaller models may provide more efficient solutions, they often come at the cost of accuracy. To tackle this problem, researchers often use model compression techniques to transform large, complex models into simpler, faster models. These techniques aim to reduce the computational cost while minimizing the loss of accuracy. The majority of the model compression research focuses exclusively on model accuracy and size/speedup as performance metrics. This paper explores how different methods of model compression impact the fairness/bias of a model. We conducted our experiments using the COMPAS Recidivism Racial Bias dataset. We evaluated a variety of model compression techniques across multiple bias groups. Our findings indicate that the type and amount of compression have substantial impact on both the accuracy and fairness/bias of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.