Abstract

A common task of Web users is querying structured information from Web pages. For realizing this interesting scenario we propose a novel query processor for systematically discovering instances of semantic relations in Web search results and joining these relation instances into complex result tuples with conjunctive queries. Our query processor transforms a structured user query into keyword queries that are submitted to a search engine, forwards search results to a relation extractor, and then combines relations into complex result tuples. The processor automatically learns discriminative and effective keywords for different types of semantic relations. Thereby, our query processor leverages the index of a search engine to query potentially billions of pages. Unfortunately, relation extractors may fail to return a relation for a result tuple. Moreover, user defined data sources may not return at least k complete result tuples. Therefore we propose an adaptive routing model based on information theory for retrieving missing attributes of incomplete result tuples. The model determines the most promising next incomplete tuple and attribute type for returning any-k complete result tuples at any point during the query execution process. We report a thorough experimental evaluation over multiple relation extractors. Our query processor returns complete result tuples while processing only very few Web pages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.