Abstract

It is well known that some members of the crow family (Corvidae) are important for seed dispersal either via frugivory (e.g. when feeding on berries) or by scatter hoarding (e.g. of nuts). Dispersal via gut passage of seeds within a fleshy fruit can be considered “classical endozoochory”. However, corvids are rarely recognized as vectors of plants lacking a fleshy fruit, or a large nut (such as plants with a dry achene, capsule or caryopsis). Dispersal of such seeds via gut passage can be considered “non-classical endozoochory”. A century ago, Heintze (1917a,b, 1918) reported on extensive field studies of seed dispersal by 11 species of European Corvidae. His work is overlooked in contemporary reviews of corvid biology. We resurrect his work, which suggests that contemporary views about seed dispersal by corvids are too narrow. Heintze identified 157 plant taxa from 42 families which were dispersed by corvids by endozoochory, as well as another nine taxa only dispersed by synzoochory (which includes scatter-hoarding). Most (54%) of the plant species dispersed by endozoochory lack a fleshy fruit and have previously been assigned to other dispersal syndromes, mainly associated with wind (10%), self-dispersal (22%) or epizoochory (18%). Plants lacking a fleshy fruit were particularly well represented from the Caryophyllaceae (12 species), Poaceae (14 species) and Polygonaceae (8 species). Of 27 taxa germinated by Heintze from seeds extracted from corvid pellets or faeces (71% of those tested), 20 lack a fleshy fruit. Similarly, of 32 taxa he recorded as seedlings having germinated from pellets in the field, 11 lacked a fleshy fruit. However, Heintze’s quantitative data show that classical endozoochory is dominant in Magpies Pica pica and Hooded Crows Corvus cornix, for which 97% of seeds dispersed were fleshy-fruited. Corvids overlap with waterfowl as vectors of terrestrial plants dispersed by non-classical endozoochory, and 56 species are dispersed by both corvids and dabbling ducks according to the lists of Heintze and Soons et al. (2016). Finally, Heintze´s data show that corvids were already dispersing alien plants in Europe a century ago, such as the North American Dwarf Serviceberry Amelanchier spicata.

Highlights

  • Plants disperse their diaspores (“seeds” from here on) by many means (Ridley, 1930), including via animal vectors (“zoochory”)

  • We identify the plant species he considered to be dispersed by endozoochory by 11 different European corvid species, quantifying the numbers of taxa recorded with different fruit types, morphological dispersal syndromes, habitat requirements and seed size

  • From Heintze’s texts, we extracted details of those plant species with strong evidence of endozoochory, in particular cases where details of the bird species were provided, together with good evidence for endozoochory either because seeds were found in an intact state in pellets, feces or the alimentary canal, or they were germinated after removal from pellets or feces

Read more

Summary

Introduction

Plants disperse their diaspores (“seeds” from here on) by many means (Ridley, 1930), including via animal vectors (“zoochory”). Dispersal of seeds embedded in the fleshy pulp of an edible berry or fruit has been called “classic endozoochory” (McPartland and Naraine, 2018). This corresponds to the long-standing practice of assigning “dispersal syndromes” to plant species on the basis of diaspore morphology, in which only fleshy-fruited diaspores are assigned to a “endozoochory syndrome” (van der Pijl, 1982; Perez-Harguindeguy et al, 2013). The Corvidae are the bird family most associated with plant dispersal by seed-caching or scatter-hoarding. This dispersal mode (a form of “synzoochory”) occurs when jays, nutcrackers or other corvids carry large diaspores, such as nuts, acorns or pine seeds in their bill and bury them in caches (Pesendorfer et al, 2016; Tomback, 2016)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.