Abstract

In the pursuit of efficient electrocatalysts for the hydrogen evolution reaction (HER), a series of manganese and cobalt heterodinuclear complexes have been synthesized and characterized that have a stark resemblance with the [NiFe]-hydrogenase active site structure. Irradiation of [Mn2(CO)10] in the presence of 1.5 eq of [NaEPh] [E = S, Se, Te] followed by reaction with [Cp*CoCl]2 led to the formation of half-sandwiched trichalcogenate-bridged heterodinuclear complexes [{Mn(CO)3}(μ-EPh)3(CoCp*)] [E = S (C1); Se (C2) and Te (C3)]. The reaction of these heterodinuclear trichalcogenate-bridged complexes with [LiBH4·THF] yielded the corresponding dichalcogenate hydride-bridged heterobimetallic complexes [(CO)3Mn(μ-EPh)2(μ-H)(CoCp*)] [E = S (C5); Se (C6) and Te (C7)], which closely imitate the Ni-R intermediate of [NiFe]-hydrogenase. The resultant complexes (C5-C7) displayed impressive H2 production in DMF in the presence of HBF4, whereas the Te-based complex (C7) showcased the highest TON (184 h-1) with an impressive Faradaic efficiency of >98%. The DFT investigations revealed a unique role of bridging chalcogens in catalysis, wherein, depending on the identity of the chalcogen (S, Se, or Te), protonation could occur via two distinct routes. This study represents a rare example of the full trio of S/Se/Te-based heterodinuclear complexes whose electrocatalytic HER activity has been probed under analogous conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.