Abstract
We develop a new nonlinear method to model structure formation in general relativity from a generalization of the relativistic Lagrangian perturbation schemes, controlled by Szekeres (and LTB) exact solutions. The overall approach can be interpreted as the evolution of a deformation field on an inhomogeneous reference model, obeying locally Friedmann-like equations. In the special case of locally one-dimensional deformations, the new model contains the entire Szekeres family of exact solutions. As thus formulated, this approach paraphrases the Newtonian and relativistic Zel'dovich approximations, having a large potential for applications in contexts where relativistic degrees of freedom are relevant. Numerical simulations are implemented to illustrate the capabilities and accuracy of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.