Abstract

Defining appropriate distance measures among rankings is a classic area of study which has led to many useful applications. In this paper, we propose a more general abstraction of preference data, namely directed acyclic graphs (DAGs), and introduce a measure for comparing DAGs, given that a vertex correspondence between the DAGs is known. We study the properties of this measure and use it to aggregate and cluster a set of DAGs. We show that these problems are $$\mathbf {NP}$$NP-hard and present efficient methods to obtain solutions with approximation guarantees. In addition to preference data, these methods turn out to have other interesting applications, such as the analysis of a collection of information cascades in a network. We test the methods on synthetic and real-world datasets, showing that the methods can be used to, e.g., find a set of influential individuals related to a set of topics in a network or to discover meaningful and occasionally surprising clustering structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.