Abstract
We investigate the automatic generation of topic pages as an alternative to the current Web search paradigm. Topic pages explicitly aggregate information across documents, filter redundancy, and promote diversity of topical aspects. We propose a novel framework for building rich topical aspect models and selecting diverse information from the Web. In particular, we use Web search logs to build aspect models with various degrees of specificity, and then employ these aspect models as input to a sentence selection method that identifies relevant and non-redundant sentences from the Web. Automatic and manual evaluations on biographical topics show that topic pages built by our system compare favorably to regular Web search results and to MDS-style summaries of the Web results on all metrics employed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.