Abstract

Graph sampling via crawling has been actively considered as a generic and important tool for collecting uniform node samples so as to consistently estimate and uncover various characteristics of complex networks. The so-called simple random walk with re-weighting (SRW-rw) and Metropolis-Hastings (MH) algorithm have been popular in the literature for such unbiased graph sampling. However, an unavoidable downside of their core random walks -- slow diffusion over the space, can cause poor estimation accuracy. In this paper, we propose non-backtracking random walk with re-weighting (NBRW-rw) and MH algorithm with delayed acceptance (MHDA) which are theoretically guaranteed to achieve, at almost no additional cost, not only unbiased graph sampling but also higher efficiency (smaller asymptotic variance of the resulting unbiased estimators) than the SRW-rw and the MH algorithm, respectively. In particular, a remarkable feature of the MHDA is its applicability for any non-uniform node sampling like the MH algorithm, but ensuring better sampling efficiency than the MH algorithm. We also provide simulation results to confirm our theoretical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.