Abstract
Following the seminal work of F. Bouchut on zero pressure gas dynamics which has been extensively used for gas particle-flows, the present contribution investigates quadrature-based velocity moments models for kinetic equations in the framework of the infinite Knudsen number limit, that is, for dilute clouds of small particles where the collision or coalescence probability asymptotically approaches zero. Such models define a hierarchy based on the number of moments and associated quadrature nodes, the first level of which leads to pressureless gas dynamics. We focus in particular on the four moment model where the flux closure is provided by a two-node quadrature in the velocity phase space and provide the right framework for studying both smooth and singular solutions. The link with both the kinetic underlying equation as well as with zero pressure gas dynamics is provided and we define the notion of measure solutions as well as the mathematical structure of the resulting system of four PDEs. We exhibit a family of entropies and entropy fluxes and define the notion of entropic solution. We study the Riemann problem and provide a series of entropic solutions in particular cases. This leads to a rigorous link with the possibility of the system of macroscopic PDEs to allow particle trajectory crossing (PTC) in the framework of smooth solutions. Generalized $\delta$-choc solutions resulting from Riemann problem are also investigated. Finally, using a kinetic scheme proposed in the literature without mathematical background in several areas, we validate such a numerical approach in the framework of both smooth and singular solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.