Abstract

Polyglycerols (sometimes also called "polyglycidols") represent a class of highly biocompatible and multihydroxy-functional polymers that may be considered as a multifunctional analogue of poly(ethylene glycol) (PEG). Various architectures based on a polyglycerol scaffold are feasible depending on the monomer employed. While polymerization of glycidol leads to hyperbranched polyglycerols, the precisely defined linear analogue is obtained by using suitably protected glycidol as a monomer, followed by removal of the protective group in a postpolymerization step. This review summarizes the properties and synthetic approaches toward linear polyglycerols (linPG), which are at present mainly based on the application of ethoxyethyl glycidyl ether (EEGE) as an acetal-protected glycidol derivative. Particular emphasis is placed on the manifold functionalization strategies including, e.g., the synthesis of end-functional linPGs or multiheterofunctional modifications at the polyether backbone. Potential applications like bioconjugation and utilization as a component in degradable biomaterials or for diagnostics, in which polyglycerol acts as a promising PEG substitute are discussed. In the last section, the important role of linear polyglycerol as a macroinitiator or as a highly hydrophilic segment in block co- or terpolymers is highlighted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call