Abstract

We develop a theory of volumetric density estimation which generalizes prior photon point (0D) and beam (1D) approaches to a broader class of estimators using " n D" samples along photon and/or camera subpaths. Volumetric photon mapping performs density estimation by point sampling propagation distances within the medium and performing density estimation over the generated points (0D). Beam-based (1D) approaches consider the expected value of this distance sampling process along the last camera and/or light subpath segments. Our theory shows how to replace propagation distance sampling steps across multiple bounces to form higher-dimensional samples such as photon planes (2D), photon volumes (3D), their camera path equivalents, and beyond. We perform a theoretical error analysis which reveals that in scenarios where beams already outperform points, each additional dimension of n D samples compounds these benefits further. Moreover, each additional sample dimension reduces the required dimensionality of the blurring needed for density estimation, allowing us to formulate, for the first time, fully unbiased forms of volumetric photon mapping. We demonstrate practical implementations of several of the new estimators our theory predicts, including both biased and unbiased variants, and show that they outperform state-of-the-art beam-based volumetric photon mapping by a factor of 2.4--40×.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.