Abstract

Water electrolysis is a promising option for pure hydrogen production, but it is limited by the high cost. Developing superb and low‐cost electrocatalysts for hydrogen evolution reaction (HER) is critical for cost reduction. Heterostructures are demonstrated with excellent HER activities, but still inferior to commercial Pt/C. Herein, vacancy type of defects is engineered into the interface of CoP3/Ni2P heterostructure by a plasma strategy. The as‐synthesized defective CoP3/Ni2P exhibits lower overpotentials than Pt/C. Its specific activity at overpotential of 50 mV is ≈2‐fold and 1.7‐fold higher than that of Pt/C in acidic and alkaline media, respectively. For water electrocatalysis, its current density reaches 215 mA cm−2 at 2.0 V, even satisfying the target of practical industrial water splitting. Theoretical calculations indicate that the interfacial defects reconstruct the electronic structure and accelerate the charge transfer, facilitating the adsorption of reactant and lowering the energy barrier of water dissociation, thereby improving HER activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.