Abstract

Motion systems with multiple control loops often run at a single sampling rate for simplicity of implementation and controller design. The achievable performance in terms of position accuracy is determined by the data acquisition hardware, such as sensors, actuators, and analog-to-digital/digital-to-analog converters, which is typically limited due to economic cost considerations. The aim of this paper is to develop a multirate approach to go beyond this traditional performance/cost tradeoff, i.e., to use different sampling rates in different control loops to optimally use hardware resources. The approach appropriately deals with the inherent time-varying behavior that is introduced by multirate sampling. A multirate feedforward control design framework is presented to optimize the tracking of a dual-stage multirate system. The application of the proposed approach to an industrial dual-stage wafer system demonstrates the advantages of multirate control, both in simulations and experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.