Abstract

In probabilistic categorization, also known as multiple cue probability learning (MCPL), people learn to predict a discrete outcome on the basis of imperfectly valid cues. In MCPL, normatively irrelevant cues are usually ignored, which stands in apparent conflict with recent research in deterministic categorization that has shown that people sometimes use irrelevant cues to gate access to partial knowledge encapsulated in independent partitions. The authors report 2 experiments that sought support for the existence of such knowledge partitioning in probabilistic categorization. The results indicate that, as in other areas of concept acquisition (such as function learning and deterministic categorization), a significant proportion of participants partitioned their knowledge on the basis of an irrelevant cue. The authors show by computational modeling that knowledge partitioning cannot be accommodated by 2 exemplar models (Generalized Context Model and Rapid Attention Shifts 'N Learning), whereas a rule-based model (General Recognition Theory) can capture partitioned performance. The authors conclude by pointing to the necessity of a mixture-of-experts approach to capture performance in MCPL and by identifying reduction of complexity as a possible explanation for partitioning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.