Abstract

Using spatially modulated illumination (SMI) light microscopy it is possible to measure the sizes of fluorescent structures that have an extension far below the conventional optical resolution limit (“subresolution size”). Presently, the sizes are determined as the object extension along the optical axis of the SMI microscope. For this, however, “a priori” assumptions on the fluorochrome distribution (“shape”) within the examined fluorescent structure have to be made. Usually it is assumed that the fluorochrome follows a Gauss-distribution or a spherical distribution. In this report we overcome the necessity to make an assumption on the shape of the fluorochrome distribution. We introduce two new experimentally obtained parameters which allow the determination of a shape measure to describe the spatial distribution of the fluorescent dye. This becomes possible by independent measurements with different excitation wavelengths. As an example, we present shape parameter measurements on individual fluorescent microspheres with a nominal geometrical diameter (“size”) of 190 nm. In the case investigated, the experimental shape correlated well with a homogeneous fluorochrome distribution (“spherical shape”) but not with a variety of other “shapes”.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call