Abstract
In ‘multi-adjoint logic programming’, MALP in brief, each fuzzy logic program is associated with its own ‘multi-adjoint lattice’ for modelling truth degrees beyond the simpler case of true and false, where a large set of fuzzy connectives can be defined. On this wide repertoire, it is crucial to connect each implication symbol with a proper conjunction thus conforming constructs of the form (←i, &i) called ‘adjoint pairs’, whose use directly affects both declarative and operational semantics of the MALP framework. In this work, we firstly show how the strong dependence of adjoint pairs can be largely weakened for an interesting ‘sub-class’ of MALP programs. Then, we reason in a similar way till conceiving a ‘super-class’ of fuzzy logic programs beyond MALP, which definitively drops out the need for using adjoint pairs, since the new semantics behaviour relies on much more relaxed lattices than multi-adjoint ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.