Abstract

Vanadium tetrasulfide (VS4, called patronite as a mineral) is a one-dimensional compound with promising properties for energy conversion applications. However, it has been scarcely investigated because of its complex synthesis. In this work, we report a detailed investigation about the formation mechanism of VS4 (V4+(S22–)2) as well as its structural, transport, and photoelectrochemical properties. To this aim, VS4 films were grown by a solid–gas reaction process between vanadium films and sulfur at temperatures between 350 and 450 °C during different reaction times. Film characterization (X-ray diffraction, energy-dispersive analysis of X-ray, micro-Raman spectroscopy, and scanning electron microscopy) reveals the formation of monoclinic VS4 nanorods (I2/C) as single crystalline phase in very short reaction times (t < 5 h). Optical characterization was carried out by reflectance and transmittance measurements to obtain the optical absorption coefficient (α = 104 cm–1 at photon energies higher than 1.6 eV...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.