Abstract
Molybdenum cofactor (Moco) biosynthesis requires iron, copper, and ATP. The Moco-containing enzyme sulfite oxidase catalyzes terminal oxidation in oxidative cysteine catabolism, and another Moco-containing enzyme, xanthine dehydrogenase, functions in purine catabolism. Thus, molybdenum enzymes participate in metabolic pathways that are essential for cellular detoxication and energy dynamics. Studies of the Moco biosynthetic enzymes MoaE (in the Ada2a-containing (ATAC) histone acetyltransferase complex) and MOCS2 have revealed that Moco biosynthesis and molybdenum enzymes align to regulate signaling and metabolism via control of transcription and translation. Disruption of these functions is involved in the onset of dementia and neurodegenerative disease. This review provides an overview of the roles of MoaE and MOCS2 in normal cellular processes and neurodegenerative disease, as well as directions for future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.