Abstract

Here we study some of the statistical and algorithmic problems that arise in recommendation systems. We will be interested in what happens when we move beyond the matrix setting, to work with higher order objects — namely, tensors. To what extent does inference over more complex objects yield better predictions, but at the expense of the running time? We will explore the computational vs. statistical tradeoffs for some basic problems about recovering approximately low rank tensors from few observations, and will show that our algorithms are nearly optimal among all polynomial time algorithms, under natural complexity-theoretic assumptions. This is based on joint work with Boaz Barak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.