Abstract

In many settings of empirical interest, time variation in the distribution parameters is important for capturing the dynamic behaviour of time series processes. Although the fitting of heavy tail distributions has become easier due to computational advances, the joint and explicit modelling of time-varying conditional skewness and kurtosis is a challenging task. We propose a class of parameter-driven time series models referred to as the generalized structural time series (GEST) model. The GEST model extends Gaussian structural time series models by a) allowing the distribution of the dependent variable to come from any parametric distribution, including highly skewed and kurtotic distributions (and mixed distributions) and b) expanding the systematic part of parameter-driven time series models to allow the joint and explicit modelling of all the distribution parameters as structural terms and (smoothed) functions of independent variables. The paper makes an applied contribution in the development of a fast local estimation algorithm for the evaluation of a penalised likelihood function to update the distribution parameters over timewithoutthe need for evaluation of a high-dimensional integral based on simulation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.