Abstract

The presence of a second critical point in water has been a topic of intense investigation for the last few decades. The molecular origins underlying this phenomenon are typically rationalized in terms of the competition between local high-density (HD) and low-density (LD) structures. Their identification often requires designing parameters that are subject to human intervention. Herein, we use unsupervised learning to discover structures in atomistic simulations of water close to the liquid-liquid critical point (LLCP). Encoding the information on the environment using local descriptors, we do not find evidence for two distinct thermodynamic structures. In contrast, when we deploy nonlocal descriptors that probe instead heterogeneities on the nanometer length scale, this leads to the emergence of LD and HD domains rationalizing the microscopic origins of the density fluctuations close to criticality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.