Abstract

When effective medical treatment and vaccination are not available, non-pharmaceutical interventions such as social distancing, home quarantine and far-reaching shutdown of public life are the only available strategies to prevent the spread of epidemics. Based on an extended SEIR (susceptible-exposed-infectious-recovered) model and continuous-time optimal control theory, we compute the optimal non-pharmaceutical intervention strategy for the case that a vaccine is never found and complete containment (eradication of the epidemic) is impossible. In this case, the optimal control must meet competing requirements: First, the minimization of disease-related deaths, and, second, the establishment of a sufficient degree of natural immunity at the end of the measures, in order to exclude a second wave. Moreover, the socio-economic costs of the intervention shall be kept at a minimum. The numerically computed optimal control strategy is a single-intervention scenario that goes beyond heuristically motivated interventions and simple “flattening of the curve”. Careful analysis of the computed control strategy reveals, however, that the obtained solution is in fact a tightrope walk close to the stability boundary of the system, where socio-economic costs and the risk of a new outbreak must be constantly balanced against one another. The model system is calibrated to reproduce the initial exponential growth phase of the COVID-19 pandemic in Germany.

Highlights

  • Preventing the spread of new diseases, to which there is no immunity in the population, is a huge problem, since there are often neither vaccines nor other effective medical treatments available in the early stages

  • The objective of this paper is the investigation of the optimal control of epidemics in the case in which an effective vaccine is impossible or never found and the epidemic must be controlled with purely non-pharmaceutical measures

  • 4 Results 4.1 Structure of the optimal intervention strategy With optimal control of the transmission rate via steered non-pharmaceutical intervention (NPI), the epidemic develops dramatically different from the uncontrolled case

Read more

Summary

Introduction

Preventing the spread of new diseases, to which there is no immunity in the population, is a huge problem, since there are often neither vaccines nor other effective medical treatments available in the early stages. In this case, non-pharmaceutical interventions (NPIs) such as intensive hand hygiene, home quarantine and measures of social distancing, e.g. closure of schools, universities and shops, prohibition of mass events up to curfew and shutdown of entire territories, are the only available measures. Mathematical models are employed to deduce important epidemiological parameters [13,14,15] and to evaluate the effect of particular measures from empirical data [16, 17]

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.