Abstract

Recent studies indicate that higher capacity of cognitive control (CCC) represents higher processing efficiency (i.e., high accuracy with fast speed). However, the speed-accuracy tradeoff (SAT) exists ubiquitously in decision-making, and little is known about whether and how the CCC is associated with SAT and whether the CCC-SAT relationship would be affected by changes in information entropy. In this study, fifty-nine college students performed a majority function task in which accuracy and response speed were equally emphasized. A Bayesian-based hierarchical drift diffusion modeling method was used to estimate three parameters of boundary separation, drift rate, and nondecision time for each participant in this task. In addition, the CCC of each participant was estimated. The results showed that the CCC was positively correlated with the SAT represented by jointly increasing accuracy and reaction time (RT), which was modulated by the change in task-relevant information entropy. Multiple mediation analyses indicated that drift rate served as the key mediator in the positive CCC-accuracy relationship while boundary separation played the major mediating role in the positive CCC-RT relationship. These findings suggest that the CCC reflects not only the rate of information processing but also decision strategies for achieving current goals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call